MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. EN 1.8201 Steel

413.0 aluminum belongs to the aluminum alloys classification, while EN 1.8201 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
190
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 2.5
20
Fatigue Strength, MPa 130
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
74
Shear Strength, MPa 170
390
Tensile Strength: Ultimate (UTS), MPa 270
630
Tensile Strength: Yield (Proof), MPa 140
450

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
450
Melting Completion (Liquidus), °C 590
1500
Melting Onset (Solidus), °C 580
1450
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.6
2.5
Embodied Energy, MJ/kg 140
36
Embodied Water, L/kg 1040
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
530
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 29
22
Strength to Weight: Bending, points 36
20
Thermal Diffusivity, mm2/s 59
11
Thermal Shock Resistance, points 13
18

Alloy Composition

Aluminum (Al), % 82.2 to 89
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
1.9 to 2.6
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 2.0
93.6 to 96.2
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0