MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. EN AC-45100 Aluminum

Both 413.0 aluminum and EN AC-45100 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
97 to 130
Elastic (Young's, Tensile) Modulus, GPa 73
72
Elongation at Break, % 2.5
1.0 to 2.8
Fatigue Strength, MPa 130
82 to 99
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
27
Tensile Strength: Ultimate (UTS), MPa 270
300 to 360
Tensile Strength: Yield (Proof), MPa 140
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 570
470
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
630
Melting Onset (Solidus), °C 580
550
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 140
140
Thermal Expansion, µm/m-K 20
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
30
Electrical Conductivity: Equal Weight (Specific), % IACS 120
95

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 7.6
7.9
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 130
290 to 710
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 53
49
Strength to Weight: Axial, points 29
30 to 35
Strength to Weight: Bending, points 36
35 to 39
Thermal Diffusivity, mm2/s 59
54
Thermal Shock Resistance, points 13
14 to 16

Alloy Composition

Aluminum (Al), % 82.2 to 89
88 to 92.8
Copper (Cu), % 0 to 1.0
2.6 to 3.6
Iron (Fe), % 0 to 2.0
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0 to 0.1
0.15 to 0.45
Manganese (Mn), % 0 to 0.35
0 to 0.55
Nickel (Ni), % 0 to 0.5
0 to 0.1
Silicon (Si), % 11 to 13
4.5 to 6.0
Tin (Sn), % 0 to 0.15
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0 to 0.2
Residuals, % 0
0 to 0.15