MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. S32202 Stainless Steel

413.0 aluminum belongs to the aluminum alloys classification, while S32202 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is S32202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
250
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 2.5
34
Fatigue Strength, MPa 130
400
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 28
79
Shear Strength, MPa 170
490
Tensile Strength: Ultimate (UTS), MPa 270
730
Tensile Strength: Yield (Proof), MPa 140
510

Thermal Properties

Latent Heat of Fusion, J/g 570
290
Maximum Temperature: Mechanical, °C 170
1030
Melting Completion (Liquidus), °C 590
1430
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.6
2.6
Embodied Energy, MJ/kg 140
37
Embodied Water, L/kg 1040
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
220
Resilience: Unit (Modulus of Resilience), kJ/m3 130
650
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 29
27
Strength to Weight: Bending, points 36
24
Thermal Diffusivity, mm2/s 59
4.0
Thermal Shock Resistance, points 13
20

Alloy Composition

Aluminum (Al), % 82.2 to 89
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21.5 to 24
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 2.0
69.4 to 77.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.45
Nickel (Ni), % 0 to 0.5
1.0 to 2.8
Nitrogen (N), % 0
0.18 to 0.26
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0