MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. S41045 Stainless Steel

413.0 aluminum belongs to the aluminum alloys classification, while S41045 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is S41045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
160
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 2.5
25
Fatigue Strength, MPa 130
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Shear Strength, MPa 170
280
Tensile Strength: Ultimate (UTS), MPa 270
430
Tensile Strength: Yield (Proof), MPa 140
230

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
29
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
2.2
Embodied Energy, MJ/kg 140
31
Embodied Water, L/kg 1040
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
92
Resilience: Unit (Modulus of Resilience), kJ/m3 130
140
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 29
16
Strength to Weight: Bending, points 36
16
Thermal Diffusivity, mm2/s 59
7.8
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 82.2 to 89
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
12 to 13
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 2.0
83.8 to 88
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0
0 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0