MakeItFrom.com
Menu (ESC)

4145 Aluminum vs. AWS E410

4145 aluminum belongs to the aluminum alloys classification, while AWS E410 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4145 aluminum and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 2.2
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 120
580
Tensile Strength: Yield (Proof), MPa 68
440

Thermal Properties

Latent Heat of Fusion, J/g 540
270
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 520
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
28
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 84
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.6
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 1040
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
120
Resilience: Unit (Modulus of Resilience), kJ/m3 31
500
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 12
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 42
7.5
Thermal Shock Resistance, points 5.5
16

Alloy Composition

Aluminum (Al), % 83 to 87.4
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.15
11 to 13.5
Copper (Cu), % 3.3 to 4.7
0 to 0.75
Iron (Fe), % 0 to 0.8
82.2 to 89
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.3 to 10.7
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0