MakeItFrom.com
Menu (ESC)

4145 Aluminum vs. EN 1.4959 Stainless Steel

4145 aluminum belongs to the aluminum alloys classification, while EN 1.4959 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4145 aluminum and the bottom bar is EN 1.4959 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 2.2
40
Fatigue Strength, MPa 48
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 69
430
Tensile Strength: Ultimate (UTS), MPa 120
630
Tensile Strength: Yield (Proof), MPa 68
190

Thermal Properties

Latent Heat of Fusion, J/g 540
300
Maximum Temperature: Mechanical, °C 160
1090
Melting Completion (Liquidus), °C 590
1400
Melting Onset (Solidus), °C 520
1350
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 7.6
5.4
Embodied Energy, MJ/kg 140
76
Embodied Water, L/kg 1040
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
190
Resilience: Unit (Modulus of Resilience), kJ/m3 31
96
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 12
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 42
3.2
Thermal Shock Resistance, points 5.5
15

Alloy Composition

Aluminum (Al), % 83 to 87.4
0.25 to 0.65
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.15
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 3.3 to 4.7
0 to 0.5
Iron (Fe), % 0 to 0.8
39.4 to 50.5
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Nickel (Ni), % 0
30 to 34
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 9.3 to 10.7
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.25 to 0.65
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0