MakeItFrom.com
Menu (ESC)

4145 Aluminum vs. EN AC-43500 Aluminum

Both 4145 aluminum and EN AC-43500 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 4145 aluminum and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
72
Elongation at Break, % 2.2
4.5 to 13
Fatigue Strength, MPa 48
62 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
27
Tensile Strength: Ultimate (UTS), MPa 120
220 to 300
Tensile Strength: Yield (Proof), MPa 68
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 540
550
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 590
600
Melting Onset (Solidus), °C 520
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 100
140
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
38
Electrical Conductivity: Equal Weight (Specific), % IACS 84
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 7.6
7.8
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 31
130 to 200
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 12
24 to 33
Strength to Weight: Bending, points 19
32 to 39
Thermal Diffusivity, mm2/s 42
60
Thermal Shock Resistance, points 5.5
10 to 14

Alloy Composition

Aluminum (Al), % 83 to 87.4
86.4 to 90.5
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 3.3 to 4.7
0 to 0.050
Iron (Fe), % 0 to 0.8
0 to 0.25
Magnesium (Mg), % 0 to 0.15
0.1 to 0.6
Manganese (Mn), % 0 to 0.15
0.4 to 0.8
Silicon (Si), % 9.3 to 10.7
9.0 to 11.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.070
Residuals, % 0
0 to 0.15