MakeItFrom.com
Menu (ESC)

4145 Aluminum vs. C96300 Copper-nickel

4145 aluminum belongs to the aluminum alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4145 aluminum and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
130
Elongation at Break, % 2.2
11
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
49
Tensile Strength: Ultimate (UTS), MPa 120
580
Tensile Strength: Yield (Proof), MPa 68
430

Thermal Properties

Latent Heat of Fusion, J/g 540
230
Maximum Temperature: Mechanical, °C 160
240
Melting Completion (Liquidus), °C 590
1200
Melting Onset (Solidus), °C 520
1150
Specific Heat Capacity, J/kg-K 880
400
Thermal Conductivity, W/m-K 100
37
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 84
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
42
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 7.6
5.1
Embodied Energy, MJ/kg 140
76
Embodied Water, L/kg 1040
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
59
Resilience: Unit (Modulus of Resilience), kJ/m3 31
720
Stiffness to Weight: Axial, points 14
8.2
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 12
18
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 42
10
Thermal Shock Resistance, points 5.5
20

Alloy Composition

Aluminum (Al), % 83 to 87.4
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 3.3 to 4.7
72.3 to 80.8
Iron (Fe), % 0 to 0.8
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.15
0.25 to 1.5
Nickel (Ni), % 0
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.3 to 10.7
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.5