MakeItFrom.com
Menu (ESC)

4145 Aluminum vs. N06025 Nickel

4145 aluminum belongs to the aluminum alloys classification, while N06025 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4145 aluminum and the bottom bar is N06025 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 2.2
32
Fatigue Strength, MPa 48
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Shear Strength, MPa 69
500
Tensile Strength: Ultimate (UTS), MPa 120
760
Tensile Strength: Yield (Proof), MPa 68
310

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 590
1350
Melting Onset (Solidus), °C 520
1300
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 84
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
50
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 7.6
8.4
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 1040
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
190
Resilience: Unit (Modulus of Resilience), kJ/m3 31
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 12
26
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 42
2.9
Thermal Shock Resistance, points 5.5
21

Alloy Composition

Aluminum (Al), % 83 to 87.4
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0 to 0.15
24 to 26
Copper (Cu), % 3.3 to 4.7
0 to 0.1
Iron (Fe), % 0 to 0.8
8.0 to 11
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.15
0 to 0.15
Nickel (Ni), % 0
59.2 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.3 to 10.7
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0 to 0.2
0.010 to 0.1
Residuals, % 0 to 0.15
0