MakeItFrom.com
Menu (ESC)

4145 Aluminum vs. S35140 Stainless Steel

4145 aluminum belongs to the aluminum alloys classification, while S35140 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4145 aluminum and the bottom bar is S35140 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 2.2
34
Fatigue Strength, MPa 48
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
78
Shear Strength, MPa 69
460
Tensile Strength: Ultimate (UTS), MPa 120
690
Tensile Strength: Yield (Proof), MPa 68
310

Thermal Properties

Latent Heat of Fusion, J/g 540
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 590
1420
Melting Onset (Solidus), °C 520
1370
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
14
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 84
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 7.6
5.5
Embodied Energy, MJ/kg 140
78
Embodied Water, L/kg 1040
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
190
Resilience: Unit (Modulus of Resilience), kJ/m3 31
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 12
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 42
3.7
Thermal Shock Resistance, points 5.5
16

Alloy Composition

Aluminum (Al), % 83 to 87.4
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.15
20 to 22
Copper (Cu), % 3.3 to 4.7
0
Iron (Fe), % 0 to 0.8
44.1 to 52.7
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.15
1.0 to 3.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
25 to 27
Niobium (Nb), % 0
0.25 to 0.75
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 9.3 to 10.7
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0