MakeItFrom.com
Menu (ESC)

4147 Aluminum vs. 5010 Aluminum

Both 4147 aluminum and 5010 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 4147 aluminum and the bottom bar is 5010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 3.3
1.1 to 23
Fatigue Strength, MPa 42
35 to 83
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 63
64 to 120
Tensile Strength: Ultimate (UTS), MPa 110
100 to 210
Tensile Strength: Yield (Proof), MPa 59
38 to 190

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 580
650
Melting Onset (Solidus), °C 560
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
200
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
45
Electrical Conductivity: Equal Weight (Specific), % IACS 120
150

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.5
2.7
Embodied Carbon, kg CO2/kg material 7.7
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1050
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1
2.3 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 24
10 to 270
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
50
Strength to Weight: Axial, points 12
10 to 22
Strength to Weight: Bending, points 20
18 to 29
Thermal Diffusivity, mm2/s 58
82
Thermal Shock Resistance, points 5.2
4.5 to 9.4

Alloy Composition

Aluminum (Al), % 85 to 88.9
97.1 to 99.7
Beryllium (Be), % 0 to 0.00030
0
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0 to 0.25
0 to 0.25
Iron (Fe), % 0 to 0.8
0 to 0.7
Magnesium (Mg), % 0.1 to 0.5
0.2 to 0.6
Manganese (Mn), % 0 to 0.1
0.1 to 0.3
Silicon (Si), % 11 to 13
0 to 0.4
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.3
Residuals, % 0
0 to 0.15