MakeItFrom.com
Menu (ESC)

4147 Aluminum vs. ACI-ASTM CN3MN Steel

4147 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN3MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4147 aluminum and the bottom bar is ACI-ASTM CN3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 3.3
39
Fatigue Strength, MPa 42
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 110
620
Tensile Strength: Yield (Proof), MPa 59
300

Thermal Properties

Latent Heat of Fusion, J/g 570
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.5
8.1
Embodied Carbon, kg CO2/kg material 7.7
6.2
Embodied Energy, MJ/kg 140
84
Embodied Water, L/kg 1050
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1
200
Resilience: Unit (Modulus of Resilience), kJ/m3 24
210
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 12
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 58
3.4
Thermal Shock Resistance, points 5.2
14

Alloy Composition

Aluminum (Al), % 85 to 88.9
0
Beryllium (Be), % 0 to 0.00030
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 0 to 0.25
0 to 0.75
Iron (Fe), % 0 to 0.8
41.4 to 50.3
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
23.5 to 25.5
Nitrogen (N), % 0
0.18 to 0.26
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0