MakeItFrom.com
Menu (ESC)

4147 Aluminum vs. ASTM A387 Grade 21L Class 1

4147 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4147 aluminum and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 3.3
21
Fatigue Strength, MPa 42
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 63
310
Tensile Strength: Ultimate (UTS), MPa 110
500
Tensile Strength: Yield (Proof), MPa 59
230

Thermal Properties

Latent Heat of Fusion, J/g 570
260
Maximum Temperature: Mechanical, °C 160
480
Melting Completion (Liquidus), °C 580
1470
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
41
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.1
Density, g/cm3 2.5
7.9
Embodied Carbon, kg CO2/kg material 7.7
1.8
Embodied Energy, MJ/kg 140
23
Embodied Water, L/kg 1050
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1
84
Resilience: Unit (Modulus of Resilience), kJ/m3 24
140
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 12
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 5.2
14

Alloy Composition

Aluminum (Al), % 85 to 88.9
0
Beryllium (Be), % 0 to 0.00030
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.8
94.4 to 96.1
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0