MakeItFrom.com
Menu (ESC)

4147 Aluminum vs. EN AC-43400 Aluminum

Both 4147 aluminum and EN AC-43400 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 4147 aluminum and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
72
Elongation at Break, % 3.3
1.1
Fatigue Strength, MPa 42
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 110
270
Tensile Strength: Yield (Proof), MPa 59
160

Thermal Properties

Latent Heat of Fusion, J/g 570
540
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 580
600
Melting Onset (Solidus), °C 560
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
32
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.5
2.6
Embodied Carbon, kg CO2/kg material 7.7
7.8
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1050
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 24
180
Stiffness to Weight: Axial, points 16
15
Stiffness to Weight: Bending, points 55
54
Strength to Weight: Axial, points 12
29
Strength to Weight: Bending, points 20
36
Thermal Diffusivity, mm2/s 58
59
Thermal Shock Resistance, points 5.2
12

Alloy Composition

Aluminum (Al), % 85 to 88.9
86 to 90.8
Beryllium (Be), % 0 to 0.00030
0
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 0 to 0.8
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.1 to 0.5
0.2 to 0.5
Manganese (Mn), % 0 to 0.1
0 to 0.55
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 11 to 13
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.15
Residuals, % 0
0 to 0.15