MakeItFrom.com
Menu (ESC)

4147 Aluminum vs. Nickel 617

4147 aluminum belongs to the aluminum alloys classification, while nickel 617 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4147 aluminum and the bottom bar is nickel 617.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 3.3
40
Fatigue Strength, MPa 42
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Shear Strength, MPa 63
510
Tensile Strength: Ultimate (UTS), MPa 110
740
Tensile Strength: Yield (Proof), MPa 59
280

Thermal Properties

Latent Heat of Fusion, J/g 570
330
Maximum Temperature: Mechanical, °C 160
1010
Melting Completion (Liquidus), °C 580
1380
Melting Onset (Solidus), °C 560
1330
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.5
8.5
Embodied Carbon, kg CO2/kg material 7.7
10
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1050
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1
230
Resilience: Unit (Modulus of Resilience), kJ/m3 24
190
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
23
Strength to Weight: Axial, points 12
24
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 58
3.5
Thermal Shock Resistance, points 5.2
21

Alloy Composition

Aluminum (Al), % 85 to 88.9
0.8 to 1.5
Beryllium (Be), % 0 to 0.00030
0
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20 to 24
Cobalt (Co), % 0
10 to 15
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0 to 0.8
0 to 3.0
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
44.5 to 62
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0