MakeItFrom.com
Menu (ESC)

4147 Aluminum vs. C14180 Copper

4147 aluminum belongs to the aluminum alloys classification, while C14180 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4147 aluminum and the bottom bar is C14180 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 3.3
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 110
210
Tensile Strength: Yield (Proof), MPa 59
130

Thermal Properties

Brazing Temperature, °C 580 to 600
1090 to 1150
Latent Heat of Fusion, J/g 570
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 580
1080
Melting Onset (Solidus), °C 560
1080
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
370
Thermal Expansion, µm/m-K 21
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.5
9.0
Embodied Carbon, kg CO2/kg material 7.7
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 1050
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1
28
Resilience: Unit (Modulus of Resilience), kJ/m3 24
69
Stiffness to Weight: Axial, points 16
7.2
Stiffness to Weight: Bending, points 55
18
Strength to Weight: Axial, points 12
6.5
Strength to Weight: Bending, points 20
8.8
Thermal Diffusivity, mm2/s 58
110
Thermal Shock Resistance, points 5.2
7.4

Alloy Composition

Aluminum (Al), % 85 to 88.9
0 to 0.010
Beryllium (Be), % 0 to 0.00030
0
Copper (Cu), % 0 to 0.25
99.9 to 100
Iron (Fe), % 0 to 0.8
0
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.075
Silicon (Si), % 11 to 13
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0