MakeItFrom.com
Menu (ESC)

4147 Aluminum vs. C82000 Copper

4147 aluminum belongs to the aluminum alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4147 aluminum and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 3.3
8.0 to 20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
45
Tensile Strength: Ultimate (UTS), MPa 110
350 to 690
Tensile Strength: Yield (Proof), MPa 59
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 570
220
Maximum Temperature: Mechanical, °C 160
220
Melting Completion (Liquidus), °C 580
1090
Melting Onset (Solidus), °C 560
970
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
260
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
45
Electrical Conductivity: Equal Weight (Specific), % IACS 120
46

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.5
8.9
Embodied Carbon, kg CO2/kg material 7.7
5.0
Embodied Energy, MJ/kg 140
77
Embodied Water, L/kg 1050
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 24
80 to 1120
Stiffness to Weight: Axial, points 16
7.5
Stiffness to Weight: Bending, points 55
18
Strength to Weight: Axial, points 12
11 to 22
Strength to Weight: Bending, points 20
12 to 20
Thermal Diffusivity, mm2/s 58
76
Thermal Shock Resistance, points 5.2
12 to 24

Alloy Composition

Aluminum (Al), % 85 to 88.9
0 to 0.1
Beryllium (Be), % 0 to 0.00030
0.45 to 0.8
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0 to 0.25
95.2 to 97.4
Iron (Fe), % 0 to 0.8
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 11 to 13
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.5