MakeItFrom.com
Menu (ESC)

4147 Aluminum vs. R30556 Alloy

4147 aluminum belongs to the aluminum alloys classification, while R30556 alloy belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4147 aluminum and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 3.3
45
Fatigue Strength, MPa 42
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 63
550
Tensile Strength: Ultimate (UTS), MPa 110
780
Tensile Strength: Yield (Proof), MPa 59
350

Thermal Properties

Latent Heat of Fusion, J/g 570
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 580
1420
Melting Onset (Solidus), °C 560
1330
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.5
8.4
Embodied Carbon, kg CO2/kg material 7.7
8.7
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1050
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1
290
Resilience: Unit (Modulus of Resilience), kJ/m3 24
290
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
23
Strength to Weight: Axial, points 12
26
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 58
2.9
Thermal Shock Resistance, points 5.2
18

Alloy Composition

Aluminum (Al), % 85 to 88.9
0.1 to 0.5
Beryllium (Be), % 0 to 0.00030
0
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
21 to 23
Cobalt (Co), % 0
16 to 21
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.8
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0 to 0.1
0.5 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13
0.2 to 0.8
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0 to 0.2
0.0010 to 0.1
Residuals, % 0 to 0.15
0