MakeItFrom.com
Menu (ESC)

4343 Aluminum vs. ASTM A372 Grade M Steel

4343 aluminum belongs to the aluminum alloys classification, while ASTM A372 grade M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4343 aluminum and the bottom bar is ASTM A372 grade M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.4
18 to 21
Fatigue Strength, MPa 45
450 to 520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 64
510 to 570
Tensile Strength: Ultimate (UTS), MPa 110
810 to 910
Tensile Strength: Yield (Proof), MPa 62
660 to 770

Thermal Properties

Latent Heat of Fusion, J/g 510
250
Maximum Temperature: Mechanical, °C 160
450
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180
46
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 150
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
5.0
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.9
2.0
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1100
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1
160
Resilience: Unit (Modulus of Resilience), kJ/m3 27
1140 to 1580
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 12
29 to 32
Strength to Weight: Bending, points 20
24 to 27
Thermal Diffusivity, mm2/s 77
12
Thermal Shock Resistance, points 5.2
24 to 27

Alloy Composition

Aluminum (Al), % 90.3 to 93.2
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.8
92.5 to 95.1
Manganese (Mn), % 0 to 0.1
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
2.8 to 3.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 6.8 to 8.2
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0