MakeItFrom.com
Menu (ESC)

4343 Aluminum vs. ASTM B817 Type II

4343 aluminum belongs to the aluminum alloys classification, while ASTM B817 type II belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is 4343 aluminum and the bottom bar is ASTM B817 type II.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
100
Elongation at Break, % 4.4
3.0 to 13
Fatigue Strength, MPa 45
390 to 530
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 110
900 to 960
Tensile Strength: Yield (Proof), MPa 62
780 to 900

Thermal Properties

Latent Heat of Fusion, J/g 510
400
Maximum Temperature: Mechanical, °C 160
350
Melting Completion (Liquidus), °C 620
1580
Melting Onset (Solidus), °C 580
1530
Specific Heat Capacity, J/kg-K 900
550
Thermal Expansion, µm/m-K 22
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.6
4.6
Embodied Carbon, kg CO2/kg material 7.9
40
Embodied Energy, MJ/kg 150
650
Embodied Water, L/kg 1100
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1
26 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 27
2890 to 3890
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
34
Strength to Weight: Axial, points 12
55 to 58
Strength to Weight: Bending, points 20
45 to 47
Thermal Shock Resistance, points 5.2
62 to 66

Alloy Composition

Aluminum (Al), % 90.3 to 93.2
5.0 to 6.0
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Copper (Cu), % 0 to 0.25
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.8
0.35 to 1.0
Manganese (Mn), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 6.8 to 8.2
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.1 to 87.8
Vanadium (V), % 0
5.0 to 6.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.4