MakeItFrom.com
Menu (ESC)

4343 Aluminum vs. EN 1.4988 Stainless Steel

4343 aluminum belongs to the aluminum alloys classification, while EN 1.4988 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4343 aluminum and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.4
34
Fatigue Strength, MPa 45
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 64
430
Tensile Strength: Ultimate (UTS), MPa 110
640
Tensile Strength: Yield (Proof), MPa 62
290

Thermal Properties

Latent Heat of Fusion, J/g 510
290
Maximum Temperature: Mechanical, °C 160
920
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180
15
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 150
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.9
6.0
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1100
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1
180
Resilience: Unit (Modulus of Resilience), kJ/m3 27
210
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 12
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 77
4.0
Thermal Shock Resistance, points 5.2
14

Alloy Composition

Aluminum (Al), % 90.3 to 93.2
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.8
62.1 to 69.5
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
1.1 to 1.5
Nickel (Ni), % 0
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 6.8 to 8.2
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.6 to 0.85
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0