MakeItFrom.com
Menu (ESC)

4343 Aluminum vs. SAE-AISI T4 Steel

4343 aluminum belongs to the aluminum alloys classification, while SAE-AISI T4 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4343 aluminum and the bottom bar is SAE-AISI T4 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 110
800 to 2140

Thermal Properties

Latent Heat of Fusion, J/g 510
250
Melting Completion (Liquidus), °C 620
1810
Melting Onset (Solidus), °C 580
1750
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 180
21
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.6
9.4
Embodied Carbon, kg CO2/kg material 7.9
8.5
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1100
120

Common Calculations

Stiffness to Weight: Axial, points 15
12
Stiffness to Weight: Bending, points 53
21
Strength to Weight: Axial, points 12
24 to 64
Strength to Weight: Bending, points 20
20 to 39
Thermal Diffusivity, mm2/s 77
5.4
Thermal Shock Resistance, points 5.2
24 to 64

Alloy Composition

Aluminum (Al), % 90.3 to 93.2
0
Carbon (C), % 0
0.7 to 0.8
Chromium (Cr), % 0
3.8 to 4.5
Cobalt (Co), % 0
4.3 to 5.8
Copper (Cu), % 0 to 0.25
0 to 0.25
Iron (Fe), % 0 to 0.8
66.3 to 72.3
Manganese (Mn), % 0 to 0.1
0.1 to 0.4
Molybdenum (Mo), % 0
0.4 to 1.0
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 6.8 to 8.2
0.2 to 0.4
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
17.5 to 19
Vanadium (V), % 0
0.8 to 1.2
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0