MakeItFrom.com
Menu (ESC)

443.0 Aluminum vs. 5082 Aluminum

Both 443.0 aluminum and 5082 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 443.0 aluminum and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 5.6
1.1
Fatigue Strength, MPa 55
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Shear Strength, MPa 96
210 to 230
Tensile Strength: Ultimate (UTS), MPa 150
380 to 400
Tensile Strength: Yield (Proof), MPa 65
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 470
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 580
560
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
32
Electrical Conductivity: Equal Weight (Specific), % IACS 130
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 30
670 to 870
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
51
Strength to Weight: Axial, points 16
39 to 41
Strength to Weight: Bending, points 23
43 to 45
Thermal Diffusivity, mm2/s 61
54
Thermal Shock Resistance, points 6.9
17 to 18

Alloy Composition

Aluminum (Al), % 90.7 to 95.5
93.5 to 96
Chromium (Cr), % 0 to 0.25
0 to 0.15
Copper (Cu), % 0 to 0.6
0 to 0.15
Iron (Fe), % 0 to 0.8
0 to 0.35
Magnesium (Mg), % 0 to 0.050
4.0 to 5.0
Manganese (Mn), % 0 to 0.5
0 to 0.15
Silicon (Si), % 4.5 to 6.0
0 to 0.2
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 0.5
0 to 0.25
Residuals, % 0
0 to 0.15