MakeItFrom.com
Menu (ESC)

443.0 Aluminum vs. ASTM A387 Grade 2 Steel

443.0 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 443.0 aluminum and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 41
140 to 170
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.6
25
Fatigue Strength, MPa 55
190 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 96
300 to 350
Tensile Strength: Ultimate (UTS), MPa 150
470 to 550
Tensile Strength: Yield (Proof), MPa 65
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
45
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.6
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1120
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 30
180 to 320
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 16
16 to 20
Strength to Weight: Bending, points 23
17 to 19
Thermal Diffusivity, mm2/s 61
12
Thermal Shock Resistance, points 6.9
14 to 16

Alloy Composition

Aluminum (Al), % 90.7 to 95.5
0
Carbon (C), % 0
0.050 to 0.21
Chromium (Cr), % 0 to 0.25
0.5 to 0.8
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 0.8
97.1 to 98.3
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 4.5 to 6.0
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0