MakeItFrom.com
Menu (ESC)

443.0 Aluminum vs. AZ80A Magnesium

443.0 aluminum belongs to the aluminum alloys classification, while AZ80A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 443.0 aluminum and the bottom bar is AZ80A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
46
Elongation at Break, % 5.6
3.9 to 8.5
Fatigue Strength, MPa 55
140 to 170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
18
Shear Strength, MPa 96
160 to 190
Tensile Strength: Ultimate (UTS), MPa 150
320 to 340
Tensile Strength: Yield (Proof), MPa 65
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 470
350
Maximum Temperature: Mechanical, °C 180
130
Melting Completion (Liquidus), °C 630
600
Melting Onset (Solidus), °C 580
490
Specific Heat Capacity, J/kg-K 900
990
Thermal Conductivity, W/m-K 150
77
Thermal Expansion, µm/m-K 22
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
11
Electrical Conductivity: Equal Weight (Specific), % IACS 130
59

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
1.7
Embodied Carbon, kg CO2/kg material 8.0
23
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1120
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
12 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 30
500 to 600
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 52
69
Strength to Weight: Axial, points 16
51 to 55
Strength to Weight: Bending, points 23
60 to 63
Thermal Diffusivity, mm2/s 61
45
Thermal Shock Resistance, points 6.9
19 to 20

Alloy Composition

Aluminum (Al), % 90.7 to 95.5
7.8 to 9.2
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.6
0 to 0.050
Iron (Fe), % 0 to 0.8
0 to 0.0050
Magnesium (Mg), % 0 to 0.050
89 to 91.9
Manganese (Mn), % 0 to 0.5
0.12 to 0.5
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 4.5 to 6.0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0.2 to 0.8
Residuals, % 0
0 to 0.3