MakeItFrom.com
Menu (ESC)

443.0 Aluminum vs. EN 1.4422 Stainless Steel

443.0 aluminum belongs to the aluminum alloys classification, while EN 1.4422 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 443.0 aluminum and the bottom bar is EN 1.4422 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.6
17
Fatigue Strength, MPa 55
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 96
520
Tensile Strength: Ultimate (UTS), MPa 150
850
Tensile Strength: Yield (Proof), MPa 65
630

Thermal Properties

Latent Heat of Fusion, J/g 470
270
Maximum Temperature: Mechanical, °C 180
760
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1120
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
130
Resilience: Unit (Modulus of Resilience), kJ/m3 30
1000
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 16
30
Strength to Weight: Bending, points 23
25
Thermal Diffusivity, mm2/s 61
4.3
Thermal Shock Resistance, points 6.9
31

Alloy Composition

Aluminum (Al), % 90.7 to 95.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.25
11 to 13
Copper (Cu), % 0 to 0.6
0.2 to 0.8
Iron (Fe), % 0 to 0.8
76.8 to 83.5
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
1.3 to 1.8
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 6.0
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0