MakeItFrom.com
Menu (ESC)

443.0 Aluminum vs. EN 1.4874 Stainless Steel

443.0 aluminum belongs to the aluminum alloys classification, while EN 1.4874 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 443.0 aluminum and the bottom bar is EN 1.4874 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 41
140
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 5.6
6.7
Fatigue Strength, MPa 55
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 150
480
Tensile Strength: Yield (Proof), MPa 65
360

Thermal Properties

Latent Heat of Fusion, J/g 470
300
Maximum Temperature: Mechanical, °C 180
1150
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 22
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.0
7.6
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1120
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
29
Resilience: Unit (Modulus of Resilience), kJ/m3 30
310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 16
16
Strength to Weight: Bending, points 23
16
Thermal Diffusivity, mm2/s 61
3.3
Thermal Shock Resistance, points 6.9
11

Alloy Composition

Aluminum (Al), % 90.7 to 95.5
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0 to 0.25
19 to 22
Cobalt (Co), % 0
18.5 to 22
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 0.8
23 to 38.9
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
18 to 22
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0