MakeItFrom.com
Menu (ESC)

443.0 Aluminum vs. EN 1.4877 Stainless Steel

443.0 aluminum belongs to the aluminum alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 443.0 aluminum and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 41
190
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.6
36
Fatigue Strength, MPa 55
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 96
420
Tensile Strength: Ultimate (UTS), MPa 150
630
Tensile Strength: Yield (Proof), MPa 65
200

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Maximum Temperature: Mechanical, °C 180
1150
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 580
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.0
6.2
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1120
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
180
Resilience: Unit (Modulus of Resilience), kJ/m3 30
100
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 16
22
Strength to Weight: Bending, points 23
20
Thermal Diffusivity, mm2/s 61
3.2
Thermal Shock Resistance, points 6.9
15

Alloy Composition

Aluminum (Al), % 90.7 to 95.5
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.25
26 to 28
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 0.8
36.4 to 42.3
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 4.5 to 6.0
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0