MakeItFrom.com
Menu (ESC)

443.0 Aluminum vs. EN 1.5682 Steel

443.0 aluminum belongs to the aluminum alloys classification, while EN 1.5682 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 443.0 aluminum and the bottom bar is EN 1.5682 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 41
230
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.6
21
Fatigue Strength, MPa 55
400
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Shear Strength, MPa 96
480
Tensile Strength: Ultimate (UTS), MPa 150
770
Tensile Strength: Yield (Proof), MPa 65
570

Thermal Properties

Latent Heat of Fusion, J/g 470
260
Maximum Temperature: Mechanical, °C 180
430
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 130
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.3
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1120
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
150
Resilience: Unit (Modulus of Resilience), kJ/m3 30
870
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 16
27
Strength to Weight: Bending, points 23
23
Thermal Shock Resistance, points 6.9
23

Alloy Composition

Aluminum (Al), % 90.7 to 95.5
0
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.6
0 to 0.3
Iron (Fe), % 0 to 0.8
88.7 to 91.1
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
8.5 to 9.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 4.5 to 6.0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0