MakeItFrom.com
Menu (ESC)

443.0 Aluminum vs. EN 1.8865 Steel

443.0 aluminum belongs to the aluminum alloys classification, while EN 1.8865 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 443.0 aluminum and the bottom bar is EN 1.8865 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 41
200
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.6
19
Fatigue Strength, MPa 55
340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 96
410
Tensile Strength: Ultimate (UTS), MPa 150
660
Tensile Strength: Yield (Proof), MPa 65
500

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.2
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1120
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
120
Resilience: Unit (Modulus of Resilience), kJ/m3 30
670
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 16
23
Strength to Weight: Bending, points 23
21
Thermal Diffusivity, mm2/s 61
10
Thermal Shock Resistance, points 6.9
19

Alloy Composition

Aluminum (Al), % 90.7 to 95.5
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0 to 0.25
0 to 1.0
Copper (Cu), % 0 to 0.6
0 to 0.3
Iron (Fe), % 0 to 0.8
93.6 to 100
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 4.5 to 6.0
0 to 0.6
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.25
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.35
0