MakeItFrom.com
Menu (ESC)

443.0 Aluminum vs. C90200 Bronze

443.0 aluminum belongs to the aluminum alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 443.0 aluminum and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 41
70
Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.6
30
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 150
260
Tensile Strength: Yield (Proof), MPa 65
110

Thermal Properties

Latent Heat of Fusion, J/g 470
200
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 630
1050
Melting Onset (Solidus), °C 580
880
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 150
62
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
13
Electrical Conductivity: Equal Weight (Specific), % IACS 130
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.0
3.3
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1120
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
63
Resilience: Unit (Modulus of Resilience), kJ/m3 30
55
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 52
18
Strength to Weight: Axial, points 16
8.3
Strength to Weight: Bending, points 23
10
Thermal Diffusivity, mm2/s 61
19
Thermal Shock Resistance, points 6.9
9.5

Alloy Composition

Aluminum (Al), % 90.7 to 95.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.6
91 to 94
Iron (Fe), % 0 to 0.8
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 4.5 to 6.0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0 to 0.5
Residuals, % 0
0 to 0.6