MakeItFrom.com
Menu (ESC)

443.0 Aluminum vs. C90500 Gun Metal

443.0 aluminum belongs to the aluminum alloys classification, while C90500 gun metal belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 443.0 aluminum and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.6
20
Fatigue Strength, MPa 55
90
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 150
320
Tensile Strength: Yield (Proof), MPa 65
160

Thermal Properties

Latent Heat of Fusion, J/g 470
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
1000
Melting Onset (Solidus), °C 580
850
Solidification (Pattern Maker's) Shrinkage, % 1.3
1.6
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 150
75
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
11
Electrical Conductivity: Equal Weight (Specific), % IACS 130
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.0
3.6
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1120
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
54
Resilience: Unit (Modulus of Resilience), kJ/m3 30
110
Stiffness to Weight: Axial, points 15
6.9
Stiffness to Weight: Bending, points 52
18
Strength to Weight: Axial, points 16
10
Strength to Weight: Bending, points 23
12
Thermal Diffusivity, mm2/s 61
23
Thermal Shock Resistance, points 6.9
12

Alloy Composition

Aluminum (Al), % 90.7 to 95.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.6
86 to 89
Iron (Fe), % 0 to 0.8
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 4.5 to 6.0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
1.0 to 3.0
Residuals, % 0
0 to 0.3