MakeItFrom.com
Menu (ESC)

444.0 Aluminum vs. AISI 201L Stainless Steel

444.0 aluminum belongs to the aluminum alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 444.0 aluminum and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
190 to 320
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 25
22 to 46
Fatigue Strength, MPa 51
270 to 530
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 190
740 to 1040
Tensile Strength: Yield (Proof), MPa 83
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 500
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 610
1410
Melting Onset (Solidus), °C 600
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.9
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1110
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 49
220 to 1570
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 20
27 to 37
Strength to Weight: Bending, points 28
24 to 30
Thermal Diffusivity, mm2/s 67
4.0
Thermal Shock Resistance, points 8.8
16 to 23

Alloy Composition

Aluminum (Al), % 90.5 to 93.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.6
67.9 to 75
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 6.5 to 7.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0