MakeItFrom.com
Menu (ESC)

444.0 Aluminum vs. AISI 310HCb Stainless Steel

444.0 aluminum belongs to the aluminum alloys classification, while AISI 310HCb stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 444.0 aluminum and the bottom bar is AISI 310HCb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
190
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 25
46
Fatigue Strength, MPa 51
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 190
590
Tensile Strength: Yield (Proof), MPa 83
230

Thermal Properties

Latent Heat of Fusion, J/g 500
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 610
1410
Melting Onset (Solidus), °C 600
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.9
4.8
Embodied Energy, MJ/kg 150
69
Embodied Water, L/kg 1110
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
210
Resilience: Unit (Modulus of Resilience), kJ/m3 49
130
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 28
20
Thermal Diffusivity, mm2/s 67
3.9
Thermal Shock Resistance, points 8.8
13

Alloy Composition

Aluminum (Al), % 90.5 to 93.5
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.6
48 to 57
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Nickel (Ni), % 0
19 to 22
Niobium (Nb), % 0
0 to 1.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 6.5 to 7.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0