MakeItFrom.com
Menu (ESC)

444.0 Aluminum vs. EN 1.4424 Stainless Steel

444.0 aluminum belongs to the aluminum alloys classification, while EN 1.4424 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 444.0 aluminum and the bottom bar is EN 1.4424 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
230
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 25
28
Fatigue Strength, MPa 51
350 to 370
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 190
800
Tensile Strength: Yield (Proof), MPa 83
480 to 500

Thermal Properties

Latent Heat of Fusion, J/g 500
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 610
1430
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.9
3.4
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1110
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 49
580 to 640
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 20
29
Strength to Weight: Bending, points 28
25
Thermal Diffusivity, mm2/s 67
3.5
Thermal Shock Resistance, points 8.8
23

Alloy Composition

Aluminum (Al), % 90.5 to 93.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 19
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.6
68.6 to 72.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
1.2 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
4.5 to 5.2
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 6.5 to 7.5
1.4 to 2.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0