MakeItFrom.com
Menu (ESC)

444.0 Aluminum vs. C66200 Brass

444.0 aluminum belongs to the aluminum alloys classification, while C66200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 444.0 aluminum and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 25
8.0 to 15
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 190
450 to 520
Tensile Strength: Yield (Proof), MPa 83
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 500
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 610
1070
Melting Onset (Solidus), °C 600
1030
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 160
150
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
35
Electrical Conductivity: Equal Weight (Specific), % IACS 140
36

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.6
8.7
Embodied Carbon, kg CO2/kg material 7.9
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 49
760 to 1030
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 53
19
Strength to Weight: Axial, points 20
14 to 17
Strength to Weight: Bending, points 28
15 to 16
Thermal Diffusivity, mm2/s 67
45
Thermal Shock Resistance, points 8.8
16 to 18

Alloy Composition

Aluminum (Al), % 90.5 to 93.5
0
Copper (Cu), % 0 to 0.25
86.6 to 91
Iron (Fe), % 0 to 0.6
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0
0.3 to 1.0
Phosphorus (P), % 0
0.050 to 0.2
Silicon (Si), % 6.5 to 7.5
0
Tin (Sn), % 0
0.2 to 0.7
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
6.5 to 12.9
Residuals, % 0
0 to 0.5