MakeItFrom.com
Menu (ESC)

5005 Aluminum vs. EN 1.4028 Stainless Steel

5005 aluminum belongs to the aluminum alloys classification, while EN 1.4028 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005 aluminum and the bottom bar is EN 1.4028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 23
11 to 17
Fatigue Strength, MPa 38 to 86
230 to 400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 70 to 130
410 to 550
Tensile Strength: Ultimate (UTS), MPa 110 to 230
660 to 930
Tensile Strength: Yield (Proof), MPa 41 to 210
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
760
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 630
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
30
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 170
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1190
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 22
94 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 12 to 320
380 to 1360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 23
24 to 33
Strength to Weight: Bending, points 19 to 31
22 to 27
Thermal Diffusivity, mm2/s 82
8.1
Thermal Shock Resistance, points 4.9 to 10
23 to 32

Alloy Composition

Aluminum (Al), % 97 to 99.5
0
Carbon (C), % 0
0.26 to 0.35
Chromium (Cr), % 0 to 0.1
12 to 14
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
83.1 to 87.7
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0 to 0.2
0 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants