MakeItFrom.com
Menu (ESC)

5005A Aluminum vs. Grade 25 Titanium

5005A aluminum belongs to the aluminum alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5005A aluminum and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 21
11
Fatigue Strength, MPa 38 to 82
550
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 71 to 130
600
Tensile Strength: Ultimate (UTS), MPa 110 to 230
1000
Tensile Strength: Yield (Proof), MPa 43 to 210
940

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
340
Melting Completion (Liquidus), °C 660
1610
Melting Onset (Solidus), °C 630
1560
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 200
7.1
Thermal Expansion, µm/m-K 24
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.0

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.3
43
Embodied Energy, MJ/kg 150
700
Embodied Water, L/kg 1190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
110
Resilience: Unit (Modulus of Resilience), kJ/m3 14 to 310
4220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 12 to 24
62
Strength to Weight: Bending, points 19 to 31
50
Thermal Diffusivity, mm2/s 82
2.8
Thermal Shock Resistance, points 5.0 to 10
71

Alloy Composition

Aluminum (Al), % 97.5 to 99.3
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 0.45
0 to 0.4
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0
0.3 to 0.8
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.3
0
Titanium (Ti), % 0
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.4