MakeItFrom.com
Menu (ESC)

5021 Aluminum vs. ASTM A182 Grade F36

5021 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F36 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5021 aluminum and the bottom bar is ASTM A182 grade F36.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 3.4
17
Fatigue Strength, MPa 85 to 110
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 170
440
Tensile Strength: Ultimate (UTS), MPa 300 to 310
710
Tensile Strength: Yield (Proof), MPa 240 to 270
490

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.4
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1180
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 10
110
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 550
650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 30 to 32
25
Strength to Weight: Bending, points 37
22
Thermal Diffusivity, mm2/s 57
10
Thermal Shock Resistance, points 13 to 14
21

Alloy Composition

Aluminum (Al), % 95.2 to 97.7
0 to 0.050
Carbon (C), % 0
0.1 to 0.17
Chromium (Cr), % 0 to 0.15
0 to 0.3
Copper (Cu), % 0 to 0.15
0.5 to 0.8
Iron (Fe), % 0 to 0.5
95 to 97.1
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0.1 to 0.5
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0.25 to 0.5
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0