MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. AISI 416 Stainless Steel

5042 aluminum belongs to the aluminum alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 3.4
13 to 31
Fatigue Strength, MPa 97 to 120
230 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 200
340 to 480
Tensile Strength: Ultimate (UTS), MPa 340 to 360
510 to 800
Tensile Strength: Yield (Proof), MPa 270 to 310
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
680
Melting Completion (Liquidus), °C 640
1530
Melting Onset (Solidus), °C 570
1480
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
30
Thermal Expansion, µm/m-K 24
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.8
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 720
220 to 940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 35 to 37
18 to 29
Strength to Weight: Bending, points 40 to 42
18 to 25
Thermal Diffusivity, mm2/s 53
8.1
Thermal Shock Resistance, points 15 to 16
19 to 30

Alloy Composition

Aluminum (Al), % 94.2 to 96.8
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
12 to 14
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
83.2 to 87.9
Magnesium (Mg), % 3.0 to 4.0
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0