MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. Grade 31 Titanium

5050 aluminum belongs to the aluminum alloys classification, while grade 31 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is grade 31 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.7 to 22
20
Fatigue Strength, MPa 45 to 100
300
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
41
Shear Strength, MPa 91 to 140
320
Tensile Strength: Ultimate (UTS), MPa 140 to 250
510
Tensile Strength: Yield (Proof), MPa 50 to 210
450

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 180
320
Melting Completion (Liquidus), °C 650
1660
Melting Onset (Solidus), °C 630
1610
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 190
21
Thermal Expansion, µm/m-K 24
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 170
6.9

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.4
36
Embodied Energy, MJ/kg 150
600
Embodied Water, L/kg 1190
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
99
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
940
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 15 to 26
32
Strength to Weight: Bending, points 22 to 33
32
Thermal Diffusivity, mm2/s 79
8.5
Thermal Shock Resistance, points 6.3 to 11
39

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0
0.2 to 0.8
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.3
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0
97.9 to 99.76
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4