MakeItFrom.com
Menu (ESC)

5051A Aluminum vs. AWS BVAg-29

5051A aluminum belongs to the aluminum alloys classification, while AWS BVAg-29 belongs to the otherwise unclassified metals. There are 15 material properties with values for both materials. Properties with values for just one material (16, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5051A aluminum and the bottom bar is AWS BVAg-29.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
73
Poisson's Ratio 0.33
0.37
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 170
180

Thermal Properties

Latent Heat of Fusion, J/g 400
120
Melting Completion (Liquidus), °C 640
710
Melting Onset (Solidus), °C 610
620
Specific Heat Capacity, J/kg-K 900
270
Thermal Expansion, µm/m-K 23
20

Otherwise Unclassified Properties

Density, g/cm3 2.7
9.7

Common Calculations

Stiffness to Weight: Axial, points 14
4.2
Stiffness to Weight: Bending, points 50
14
Strength to Weight: Axial, points 17 to 18
5.2
Strength to Weight: Bending, points 25
7.3
Thermal Shock Resistance, points 7.6
8.8

Alloy Composition

Aluminum (Al), % 96.1 to 98.6
0
Cadmium (Cd), % 0
0 to 0.0010
Carbon (C), % 0
0 to 0.0050
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.050
22.5 to 25.5
Indium (In), % 0
14 to 15
Iron (Fe), % 0 to 0.45
0
Lead (Pb), % 0
0 to 0.0020
Magnesium (Mg), % 1.4 to 2.1
0
Manganese (Mn), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.0020
Silicon (Si), % 0 to 0.3
0
Silver (Ag), % 0
60.5 to 62.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0 to 0.0010
Residuals, % 0 to 0.15
0