MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. AISI 416 Stainless Steel

5052 aluminum belongs to the aluminum alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 46 to 83
230 to 320
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 22
13 to 31
Fatigue Strength, MPa 66 to 140
230 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 120 to 180
340 to 480
Tensile Strength: Ultimate (UTS), MPa 190 to 320
510 to 800
Tensile Strength: Yield (Proof), MPa 75 to 280
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 190
680
Melting Completion (Liquidus), °C 650
1530
Melting Onset (Solidus), °C 610
1480
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
30
Thermal Expansion, µm/m-K 24
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.6
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1190
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
220 to 940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 19 to 33
18 to 29
Strength to Weight: Bending, points 27 to 38
18 to 25
Thermal Diffusivity, mm2/s 57
8.1
Thermal Shock Resistance, points 8.3 to 14
19 to 30

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.15 to 0.35
12 to 14
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
83.2 to 87.9
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants