MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. AISI 316LN Stainless Steel

5056 aluminum belongs to the aluminum alloys classification, while AISI 316LN stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is AISI 316LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 4.9 to 31
42
Fatigue Strength, MPa 140 to 200
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
82
Shear Strength, MPa 170 to 240
410
Tensile Strength: Ultimate (UTS), MPa 290 to 460
590
Tensile Strength: Yield (Proof), MPa 150 to 410
230

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 190
940
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Calomel Potential, mV -780
-40
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.0
3.8
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
200
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 48
21
Strength to Weight: Bending, points 36 to 50
20
Thermal Diffusivity, mm2/s 53
4.1
Thermal Shock Resistance, points 13 to 20
13

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.2
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
62 to 71.9
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0