MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. ACI-ASTM CK3MCuN Steel

5059 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK3MCuN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is ACI-ASTM CK3MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 25
39
Fatigue Strength, MPa 170 to 240
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 350 to 410
620
Tensile Strength: Yield (Proof), MPa 170 to 300
290

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Corrosion, °C 65
420
Maximum Temperature: Mechanical, °C 210
1090
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1350
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 9.1
5.6
Embodied Energy, MJ/kg 160
76
Embodied Water, L/kg 1160
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
200
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 36 to 42
21
Strength to Weight: Bending, points 41 to 45
20
Thermal Diffusivity, mm2/s 44
3.2
Thermal Shock Resistance, points 16 to 18
14

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.25
19.5 to 20.5
Copper (Cu), % 0 to 0.25
0.5 to 1.0
Iron (Fe), % 0 to 0.5
49.5 to 56.3
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 1.2
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
17.5 to 19.5
Nitrogen (N), % 0
0.18 to 0.24
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.45
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0