MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. C94100 Bronze

5082 aluminum belongs to the aluminum alloys classification, while C94100 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is C94100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
92
Elongation at Break, % 1.1
7.8
Poisson's Ratio 0.33
0.36
Shear Modulus, GPa 25
34
Tensile Strength: Ultimate (UTS), MPa 380 to 400
190
Tensile Strength: Yield (Proof), MPa 300 to 340
130

Thermal Properties

Latent Heat of Fusion, J/g 400
160
Maximum Temperature: Mechanical, °C 180
130
Melting Completion (Liquidus), °C 640
870
Melting Onset (Solidus), °C 560
790
Specific Heat Capacity, J/kg-K 910
330
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
9.2
Embodied Carbon, kg CO2/kg material 8.9
3.0
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
14
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
97
Stiffness to Weight: Axial, points 14
5.5
Stiffness to Weight: Bending, points 51
16
Strength to Weight: Axial, points 39 to 41
5.8
Strength to Weight: Bending, points 43 to 45
8.1
Thermal Shock Resistance, points 17 to 18
7.6

Alloy Composition

Aluminum (Al), % 93.5 to 96
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
72 to 79
Iron (Fe), % 0 to 0.35
0 to 0.25
Lead (Pb), % 0
18 to 22
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.2
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.5 to 6.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 1.0
Residuals, % 0
0 to 1.3