MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. C90400 Bronze

5083 aluminum belongs to the aluminum alloys classification, while C90400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
77
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 17
24
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 290 to 390
310
Tensile Strength: Yield (Proof), MPa 110 to 340
180

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
990
Melting Onset (Solidus), °C 580
850
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 120
75
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
12
Electrical Conductivity: Equal Weight (Specific), % IACS 96
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.9
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1170
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
65
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
150
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 29 to 40
10
Strength to Weight: Bending, points 36 to 44
12
Thermal Diffusivity, mm2/s 48
23
Thermal Shock Resistance, points 12 to 17
11

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
86 to 89
Iron (Fe), % 0 to 0.4
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7