MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. EN 1.4935 Stainless Steel

5086 aluminum belongs to the aluminum alloys classification, while EN 1.4935 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is EN 1.4935 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 20
16 to 18
Fatigue Strength, MPa 88 to 180
350 to 400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 160 to 230
480 to 540
Tensile Strength: Ultimate (UTS), MPa 270 to 390
780 to 880
Tensile Strength: Yield (Proof), MPa 110 to 320
570 to 670

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Corrosion, °C 65
380
Maximum Temperature: Mechanical, °C 190
740
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
130
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
830 to 1160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 28 to 40
28 to 31
Strength to Weight: Bending, points 34 to 44
24 to 26
Thermal Diffusivity, mm2/s 52
6.5
Thermal Shock Resistance, points 12 to 17
27 to 30

Alloy Composition

Aluminum (Al), % 93 to 96.3
0
Carbon (C), % 0
0.17 to 0.24
Chromium (Cr), % 0.050 to 0.25
11 to 12.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
83 to 86.7
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0.3 to 0.8
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0.1 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
0.4 to 0.6
Vanadium (V), % 0
0.2 to 0.35
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants