MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. Grade 9 Titanium

5086 aluminum belongs to the aluminum alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.7 to 20
11 to 17
Fatigue Strength, MPa 88 to 180
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 160 to 230
430 to 580
Tensile Strength: Ultimate (UTS), MPa 270 to 390
700 to 960
Tensile Strength: Yield (Proof), MPa 110 to 320
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
330
Melting Completion (Liquidus), °C 640
1640
Melting Onset (Solidus), °C 590
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 130
8.1
Thermal Expansion, µm/m-K 24
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.8
36
Embodied Energy, MJ/kg 150
580
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 28 to 40
43 to 60
Strength to Weight: Bending, points 34 to 44
39 to 48
Thermal Diffusivity, mm2/s 52
3.3
Thermal Shock Resistance, points 12 to 17
52 to 71

Alloy Composition

Aluminum (Al), % 93 to 96.3
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.25
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.15
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4

Comparable Variants