MakeItFrom.com
Menu (ESC)

511.0 Aluminum vs. ASTM Grade HE Steel

511.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HE steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 511.0 aluminum and the bottom bar is ASTM grade HE steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
190
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 3.0
10
Fatigue Strength, MPa 55
160
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
79
Tensile Strength: Ultimate (UTS), MPa 150
670
Tensile Strength: Yield (Proof), MPa 83
310

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 590
1360
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.8
3.5
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7
56
Resilience: Unit (Modulus of Resilience), kJ/m3 51
240
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 15
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 59
3.6
Thermal Shock Resistance, points 6.5
14

Alloy Composition

Aluminum (Al), % 93.3 to 96.2
0
Carbon (C), % 0
0.2 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.5
53.9 to 65.8
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
8.0 to 11
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.7
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0